Jump to content
  • Reef Aquarium Articles


      gena

      Introduction to Pico Jar Maintenance: Water Changes
      Pico jar reefs seem to be gaining popularity with reef hobbyists. Maybe it’s a fascination with small things, or perhaps it’s the idea of “less work” that is appealing to some. For me personally, it’s a combination of the two. I love miniature versions of things, and I love the challenge of creating a miniature reef system, which just so happens to translate into less time spent maintaining the system and more time spent looking at and enjoying the system.
       
       
      For a basic pico setup with only a light source, heater, and circulation pump, the weekly water change is of utmost importance. It is the way you will remove the organics from the water and replenish lost minerals and trace elements. It is recommended to do a 100% water change removal and replacement. It is easy and safe to do, as well as cost effective, on such a small system.
      Standard Water Change Rules Apply
       
       
      Whether you are working with a 250 gallon system or a 2 gallon system, the standard water change rules apply. You will want to use RO/DI water (or distilled water) to help avoid nuisance algae. You will need to match your clean water salinity and water temperature to the pico system you are maintaining. You can use any salt mix that you like, but it is best to stick with one brand of salt as not all are created equally and switching salt frequently can be stressful to your tank inhabitants.
      Tools Needed

       
      Items I have found useful during a water change include: Towels, tubing or hose lines, algae scraper, tongs, scissors, turkey baster, 2 buckets.
       
      Since you need to work fairly quickly when doing a 100% water change on a pico reef system, it’s best to have everything ready before you get started.
      Let’s Get Started
      You want to have your corals exposed to air for the least amount of time as possible. While most coral can survive extended periods of time exposed to air, I still like to work as quickly as I can, while also being careful and thorough, with the task at hand. I start with scraping the glass for algae. This gets the algae suspended in the water column before water removal. Now that your glass is clean (let’s hope it wasn’t THAT dirty), you can observe any problem areas. You can use your tongs to pull out any hair algae/nuisance algae. This is also the time to look for any coral warfare that you may need to intervene in. Coral scissors/clippers may be needed for trimming or removing coral over-growth. In such a tiny space, coral growth will be even more obvious. Typically coral cutting makes the corals slime up. You want to do any cutting prior to water removal so that you can remove the slime with the water change.
       

       
      Now is the time to put that turkey baster to work! Blast the rocks and in between the coral to get any detritus suspended in the water column. You’d be amazed at the amount of detritus produced by the coral alone. 
       

       
      It’s almost time to drain your pico, but first, don’t forget to shut down your heater and circulation pump. You do not want to damage these items during the 100% water change.
       

       
      I find it best to have two buckets. One for waste water, and one for clean saltwater. Use your clear tubing and siphon the water out of the pico tank and into the waste bucket. I find it useful to do another basting of the rocks just prior to siphoning. You want to get as much detritus suspended and out as possible. Pay attention to the sand as a lot of detritus will settle in that area.
       

       
      Once all of the water is removed, all that's left is to replace the old water with the new saltwater that is temperature and salinity matched. Don’t forget to turn your air circulation and heater back on at the end. You can use your towels to clean up any spills.
       

      Final Thoughts
      While no system comes without work, I have found that maintaining a pico reef is easy, fast, and enjoyable. My main goal is to work as quickly as I can so that my coral is not exposed to air for an extended period of time. I find that planning ahead is very helpful to accomplish this goal. Have all of your supplies ready before you begin. It may sound scary to remove all of the water from your aquarium, but it is completely safe and successfully done by many hobbyists, including myself. You may find that it is so easy, and that you enjoy it so much, that you end up doing more than one water change per week. Quite frankly, it’s been known to happen.
       
      Happy pico reef maintenance, to all!
       
      @gena
      pj86
      An Introduction To Reef Jars
      When I first became interested in saltwater aquariums, I was always attracted to the smaller systems. I have been fascinated with miniature ecosystems as long as I can remember, so much so that I started PJ Reefs, a company dedicated to reef jars and vases! At first many people said that it would be difficult to maintain a small "pico aquarium", especially if it was the size of a jar. Also there were concerns that the size would limit the amount of possible combinations, and could not possibly be entertaining to create. Four years ago I started my first reef jar right here at Nano-Reef.com. I shared my journey, a simple jar that would follow me for four years. The following is a write-up on how to create your own container reef (e.g. jar, bowl, vase).
       

       
      "Simplicity is Key"
      Many steps are similar to starting a nano or pico aquarium. One main difference to note, is the simplicity on which these systems are based.
      Choosing Your Container
      The most important component to build a container reef is the container itself! The shapes and sizes of containers are virtually endless: jars, bowls, vases, candle holders, terrariums, etc. You can find a huge selection of suitable containers at all sorts of local shops, craft and hobby stores like Michaels or Joann, the home goods area of your nearest Target or Walmart, or check your local thrift stores for some truly unique finds! If you can't find something around the house or around town, there's always Amazon.
       

       
      I prefer curved shapes, as this will create a magnifying distortion which attracts the eye to key focal points in the container reef. For less distortion one can choose a vase that has fewer curves. Something unique about jars are their lids; lids that don’t have rubber gaskets will allow for gas exchange, as gases easily diffuse across small gaps. It is highly suggested to have a lid, as this will help limit the amount of evaporated water from the container.
       
      Glass containers are best suited for keeping a reef because of their durability and overall scratch resistance. Always consider the long term durability of your selected container, anything too fragile could lead to difficult maintenance or disaster.
      Selecting Your Light
      The light source you choose is important as this is the main source of nutrients and energy for the corals. Small reef spectrum LED lights and compact fluorescent bulbs are ideal choices because they emit the least amount of heat. Options include PAR30 or PAR38 LED bulbs that can be purchased at Bulk Reef Supply and Coral Compulsion, or the JBJ Picotope 9W Powercompact fluorescent light that can be purchased at Marine Depot. I started my original reef jar with a JBJ Picotope light in fact!
       

       
      PAR LED bulbs utilize a common household E27 lamp socket, allowing for the use of common household fixtures like desk lamps to hold the light over your pico container. Similar screw type compact fluorescent bulbs can also be found in reef aquarium 50/50 spectrums from Coralife.
      Getting the Right Flow
      Traditional tanks use large return pumps and powerheads to create the water circulation that allows corals to receive the necessary nutrients. For larger pico containers, a mini powerhead pump can provide necessary water movement, as long as space is available. In the limited space of a pico reef jar however, one usually needs to minimize the footprint of a powerhead. To overcome the space limitations, an air pump with an air stone placed at the bottom of the jar or vase is recommended to create the necessary flow. Typically smaller air bubbles are preferred as this will create the smooth flow necessary for the corals to thrive. Large bubbles typically create a non-laminar flow that is not adequate for the corals to thrive.
      Put a Lid On It
      To minimize water evaporation, it is recommended to have a lid or cover for your container reef. If your container doesn't have a matching clear lid already, a basic cover can be crafted from clear acrylic. When covering your pico container, ensure that the seal is not air tight, it is vital to allow for some gas exchange with the surface of the water.
       
      If a lid or cover is not used, an auto-top off system should be used to replace evaporated freshwater and keep the salinity stable. Monitor your container closely as evaporation rates can change with the seasons.
      Preparing the Live Rock and Sand
      Due to the small size of the aquarium, aquascaping will typically depend on the shape and characteristics of just one or two pieces of live rock. You want to choose a live rock that is nice and porous as well. Also remember that corals and inhabitants will need space to grow, leave extra room for them to fill in the space over time, and don't be tempted to add too much rock.
       
      Sand sand can be added at the bottom of the jar to give it a more natural look if you would like, or your container can be left without sand to allow for easier cleaning. Don't make your sand bed too deep though or it may become too difficult to remove detritus.
      How About the Nitrogen Cycle?
      Reef jars go through the nitrogen cycle just like any other reef, but due to the small amount of water volume and complete 100% water changes, you might not detect any changes in nitrogen. This is known as a soft cycle. The best practice is to add live rock and let the rock cycle for a few days, up to two weeks, depending on the handling of the live rock. To make certain the cycle has completed the aquarium water can be tested using a test kit for ammonia, nitrite, and nitrate.
      Choosing Appropriate Livestock
      Just as with a large reef aquarium, livestock should be carefully researched before being added to confined the ecosystem. All life should added one piece at a time, making sure that stability is maintained. Some livestock are better suited for small pico reef jars than others. Here is a short list of some suggested livestock:
       
      Zoanthus
      Zoanthids are extremely hardy corals that will tolerate a wide range of parameters. Also, some zoanthid species in nature tolerate low and hide tides which exposes them to air and wind for an extended period of time. They are also appealing due to the wide variety of colors available.
        Palythoas
      This genus typically is larger than their zoanthus counterpart, but they are similar in that they are extremely hardy and also come in a wide array of colors. Because of their larger nature and polyp expansion, you can add a few at a time and allow them to grow and establish a spot in the reef vase.
        Mushrooms
      Mushrooms are flat discs that range from tiny to very large. Because of their flat nature and ability to contort to fill the smallest places, you can place these corals easily on the live rock and they will typically move to find the correct place for them to thrive. They come in a variety of colors and shapes, and are very hardy soft corals.
        Green Star Polyps
      Green star polyps are hardy and typically have a fast growth rate. Because of their fluorescent green colored polyps and resemblance to grass, these corals add movement and color to a reef container. They are soft corals that are very hardy and are easy to maintain.
        Acanthastrea
      Acan corals are easily propagated and be fragged into single polyps that will grow into colonies over time.  They are a favorite in reef vases because they can easily be spot fed and no excess food will remain in the water column. Care must be taken with placement of these corals though, because they have sweeper tentacles that can sting nearby corals. It is best to leave a bit of space between acans and other nearby corals.
        Other Corals
      Almost any coral that is of an appropriate size can be maintained in the reef vase aquaria. The needs of each type of coral, including lighting and flow, must be taken into consideration. It is important to note that the same principles and concepts apply from larger tanks. Water parameters and maintenance are still important to allow your reef to thrive and flourish.
        Macroalgae
      Macroalgaes can also be added to reef jars. They come in a variety of colors and textures and have the added benefit of assisting with nutrient export. Typically, species of red pigmentation are desirable as they are hardy and add a nice pop of color to the reef. Gracillaria and red grape are common varieties of red macroalgae that do well in these aquariums. Suitable Fish and Invertebrates
      Depending on the size of the aquarium, fish species that are suitable for container reefs are few and hard to come by. For larger containers, certain small gobies can be kept if their feeding needs can be met. However, most container reefs do no contain any fish, and instead focus only on corals and small invertebrates. Mainly shrimp, snails, and small crabs can be maintained in container reefs. Some of the invertebrates commonly kept in container reefs are sexy shrimp, pom pom crabs, anemone shrimp, small hermit crabs, and small snails. Research is key, as some species have very specific needs that must be met to successfully keep them, never assume!
      Maintaining Your Reef Container
      Keep your newly created ecosystem under your light source (you can use a digital outlet timer to control your lighting cycle) and you are ready to enjoy your reef. With the proper maintenance you will be on your way to seeing your reef grow and thrive!
       
      There are five simple maintenance requirements to keep a successful reef jar:
      Complete a weekly 100% water change. This will replenish any lost ions and reset the water parameters. One of the benefits of owning a reef jar is that it is easy and affordable to do a complete water change. Maintain the temperature between 76° and 82° Fahrenheit. The most important part is to keep a stable temperature with no drastic fluctuations (e.g. 4-5 degrees within an hour). Add a low wattage aquarium heater to your container if needed. Top-off with of RO/DI freshwater as water evaporates from the reef container. Adding a lid to your container will help to minimize evaporation, just make sure it's not an air tight seal! Maintain sufficient water movement and circulation. Add an air pump and air stone to aid in water movement and gas exchange. Alternatively, small powerheads can also be used for water movement. Do not overstock corals and animals. Have patience as drastic additions can quickly have a negative outcome. Enjoy Your Pico Reef
      Now you know the fundamentals of how to build and maintain your own small container reef. It is simple and fun to do! When properly maintained your container reef can be enjoyed for years to come. I have successfully maintained a reef jar for four years, others have had theirs for over 10 years now!
       
      @pj86
      KuruptPixel
      Living in an apartment with a reef aquarium can present some unique challenges, it's often a difficult to find enough space to store RO/DI filters, water storage containers, and saltwater mixing buckets. I went about a year and a half mixing up a 5 gallon bucket of salt water in the kitchen every Tuesday night with a powerhead and heater in it until the next day when I’d do a water change. I kept it clean and as out of the way as I could so my wife didn't get annoyed with this whole reef tank thing. We have a small patio space that we really don’t use much aside from some storage and a BBQ, so I used that as an excuse to get my water change system out of the kitchen. My wife was more than happy to move the bucket for me!
       
      I know this may not be an option for everyone with a small space, but all the water change station guides I had found were written by guys with 120 gallon tubs in a garage with no worry of running out of space or it being in the way. Even though those systems were large, it occurred to me that I could fully scale the whole thing down to 2 x 5 gallon tubs, and build it the same otherwise, and it could work great for my needs. Maybe hide it in a closet? I didn’t know for sure, but I’d try it!
      RO/DI Unit
      SpectraPure 90 GPD Dual Probe Inline TDS Meter Float Valve Membrane Flush Kit  

      The Original Build: Version 1.0

       
      PARTS
      2 x 15 Gallon Rubbermaid Roughneck Hi-top tubs Mag Drive 500 water pump Aqueon Pro 150 watt submersible Heater Sicce Silent 3.5 water pump ½” PVC plumbing (Various T’s, elbows, 45 degrees) 3 x Ball Valves 3 x ½” Uniseals Lots of Unions Lifegard digital thermometer Mastercraft 4-outlet GFCI power bar  
      This setup was certainly overkill for what it was, but I really wanted to get some good flow in both storage tanks so that even the clean ATO water didn’t just sit stagnant. I built out some fittings for each of the pumps to direct the flow but also slow it down a bit since they were each hugely overrated for what I was using them for. This setup I also ran off an outdoor light timer so it would turn on and mix the salt water twice a day for about an hour just so it wasn’t sitting for too long.
       
      The RO/DI runs up into the top tub and is controlled by a float switch so I could let it run whenever and not worry about it overflowing. The pump inside kept the water churning and oxygenated.
       

       
      When I needed freshwater for my ATO top up, I would fill up a jug by keeping the center ball valve closed and opening the ball valve to the right with the spout. I put the ATO spout above the mixing pipe just to ensure there was no back splash or salt contamination in my clean water reserve.
       

       
      When I needed salt water, I would crank open the center valve and let gravity feed the lower tub with fresh water. Turn on the pump and add the salt. Let it mix and heat up to the current tank’s needs and it’s good to go! For this setup I just had a valve spout coming out from the lower end of the salt tub and I would fill a bucket for water changes and carry that to and from the tank.
       

       
      This system was very compact and helped streamline my water change process, but after spending about a year with the original design, I knew I could make some further improvements.
      The Current Build: Version 2.0

       

       
      PARTS
      2 x 20 Gallon Rubbermaid Brutes Sicce Silent 3.5 water pump Lots more unions ½” PVC plumbing (Various T’s, elbows, 45 degrees, barbs) A few ¾” plumbing because of the Sicce intake 4 x ½” Uniseals 15’ ½” hose 3 x Ball Valves ½” Two Little Fishies ball valve Silicon dish pad Aqueon Pro 150 watt submersible heater Lifegard digital thermometer Mastercraft 4-outlet GFCI power bar Air pump Airline and airstone  
      I had been planning out this upgrade over a few months after having used the original system for about a year, I knew how I used it and what I wanted it to do going forward. I knew I wanted it to feed out to an external pump so I could control the heat inside the Brute better. It still gets a bit hot as it passes through the pump, but the entire pump isn’t sitting inside the water heating it all up anymore. I didn’t include any pump or flow for the freshwater tank in this setup because of the heat and power, but I am using a run of the mill airstone just to give it a little aeration and oxygen when it’s on. I put the pump on a brick and slid a sliced up piece of silicon dish mat underneath it to absorb any other vibration. It’s pretty much dead silent as a whole. Even though it’s twice as big as the previous setup it’s 10 times quieter because there's no vibration anymore.
       

       

       

       
      When I need freshwater ATO top up, it’s the same basic principle on a slightly larger scale. The RO/DI feeds into the top Brute through the float valve. On the bottom right I have the ATO top off spout.
       

       
      When I need saltwater, below the ATO spout is another valve to fill the bottom Brute with fresh water. From there it cycles out the bottom of the Brute, through the pump and up to the top and back in. I squeezed a smaller tube onto the end of the pipe so it creates a faster flow as it exits for better mixing. I do have a small powerhead inside as well but I don’t usually have it on, I find there's enough flow without it. When I am ready to fill up the aquarium with new water I can take the hose, switch the two valves (one on, one off), and then take it directly over to the tank and control the flow from there with the Two Little Fishies ball valve.
       

       

       

       

       

       

      What I Learned
      Every build thread you will read will always talk about unions. Use as many unions as you can. Seriously. Unions. They are more pricey but it’ll be worth it when you have to take out a dead pump or pipe and replace/clean it. They will make it easy to unhook everything as well so you can take it down for cleaning or a move! Unions. Just do it.
       
      Eventually when I do a full, proper final build I will order parts and pipe from a reef supply shop just so it all looks cleaner. The Home Depot stock pipe has all the red writing on it that makes it look budget. I know that sounds silly... but it'll look cooler and really that's all that matters. 
       
      Having a hose that goes directly to the tank to refill and not having to carry buckets through the house is amazing! I know it’s not an option for most of us but if you can do it, do it! It’s truly amazing!
       
      @KuruptPixel
      seabass
      Meet Ich
      Cryptocaryon irritans (a.k.a. Marine or Saltwater Ich, Crypto, or just plain Ich) is one of the most common infestations which plague saltwater fish. It's easily identified by white spots which are about the size of a grain of salt (unlike Marine Velvet, which is notably smaller). In addition, the fish might be seen rubbing against objects, have a lack of appetite, or exhibit heavy breathing, possibly even progressing to frayed fins and cloudy eyes.[1]
       

      Watanabei Angelfish with Ich parasites, photo by seabass.
       
      Ich is a parasite that will feed on its host fish for several days before heading to the substrate. After several hours on the rock or sand, it will encyst and divide into hundreds of potential new parasites. This noninfectious stage can last anywhere between 3 and 28 days.[1] Afterward, they hatch and become free swimming parasites, looking for a fish to infect.
       
      In the wild, this mass reproduction helps ensure the survival of the parasite. But an occasional parasite is typically easily endured by fish in the wild. However, in the confines of our tanks, where the fish cannot escape from the eventual hundreds, or even thousands, of free swimming parasites, an outbreak can lead to the death of the host fish. In addition, the infected fish will likely infect any other fish being held in their shared system (like retail fish tanks).
      How To Treat Marine Ich
      The two most common and effective remedies for curing fish of Ich are Seachem Cupramine™ and hyposalinity treatments. Cupramine is widely considered the most effective method, while hyposalinity may be the easiest on the fish. There are other medications which might also be effective, like Seachem ParaGuard™; however Cupramine is considered to be the gold standard when it comes to Ich medications.
      Copper Treatment
      Seachem Cupramine is a copper treatment, and is ONLY to be used in a hospital tank without calcium rock or substrate. This is because copper is especially toxic to corals and inverts. It also binds to calcium, which reduces its effectiveness, and makes the rock or sand unusable in tanks that will eventually contain invertebrates. And while Cupramine is a relatively safe form of copper for fish, it is still important to ensure you are treating with proper levels via testing (you should not to exceed 0.6 mg/L of copper). In addition, you must remove any chemical filter media from the treatment tank, and carefully follow the instructions on the label.
      Hyposalinity Treatment
      Hyposalinity, a procedure to reduce the level of salt in the water (hypo), is also highly effective, and is my favorite option for treating Ich. In fact, hyposalinity helps the fish conserve energy during osmoregulation and can even reduce stress.[3] During hypo treatments, specific gravity is usually lowered to 1.009.[1] This is easily endured by most bony fish, with the exception of seahorses, and reportedly some clownfish (which should be treated at a specific gravity of 1.011).[2] It's safe to lower the specific gravity quite quickly, but it must be raised back to normal very slowly.
       
      You must use a refractometer calibrated with RO/DI water to a specific gravity of 1.000 (versus using typical calibration fluid). Swing arm hydrometers are not accurate enough to ensure proper levels. Also note that hyposalinity cannot be used in tanks with live rock or sand containing worms, pods, or other crustaceans, as this will kill them, resulting in die off and an ammonia spike. However, hypo treatments can still be used if the live rock and sand is otherwise devoid of non-bacterial life. It can also be used in conjunction with other meds, such as Seachem ParaGuard.
       
      Once all of the fish are visibly clear of Ich (which usually takes less than 7 days), you should maintain hyposalinity for an additional month, as the treatment is most effective during the parasite's free swimming stage. Afterward, the specific gravity should be slowly increased by no more than 0.002 per day.[1]
       
      There are numerous less effective remedies which range from UV sterilizers, to “reef-safe” anti-parasitic medications, all which may yield different degrees of effectiveness.[5] In addition, there are even some ineffective remedies, like garlic.[4] While I don't want to dispute the claims of these other marketed treatments, I tend to remain skeptical of their ability to completely wipe out Cryptocaryon, and personally recommend the use of either Cupramine or hyposalinity when treating your fish for Ich.
      Wait It Out
      While your fish are in their hospital tank, the display tank should remain fallow (without fish) for a period of six weeks. This is usually long enough for the parasite to encyst, hatch, and die without finding a host. If using hyposalinity in a hospital tank, it's possible to periodically introduce some water from your treatment tank into your fallow display tank; this might encourage the parasite to look for a host, not find one, and eventually die. However, you don't want to introduce any water containing copper into your display system.
       
      Now that your tank is free of Ich, you will want to keep it that way by quarantining all new livestock. To avoid ammonia spikes in your quarantine tank (QT), you should transfer an established bio-filter from your main tank into the QT.[6] In addition, adequate flow and lighting are required for your quarantine system. Live rock, coral, and other inverts can be quarantined for five weeks without a fish in the tank (which will provide ample time for the parasite's cysts to hatch and die). New fish can be observed in quarantine for five weeks as well, and treated with hyposalinity or Cupramine (and additional quarantine) if it becomes necessary.
      References
      Pro, Steven (2003) Marine Ich/Cryptocaryon irritans - A Discussion of this Parasite and the Treatment Options Available, Part I [Online] http://reefkeeping.com/issues/2003-08/sp/index.php [Accessed 03/08/2017]. Giwojna, Pete (2007) Hyposalinity or Osmotic Shock Therapy (OST) [Online] http://wetwebmedia.com/ca/volume_4/V4I4/hyposalinity/OST.htm [Accessed 03/09/2017]. Bartelme, Terry D. (2007) Aquarium Fish: Applications for Hyposalinity Therapy: The Benefits of Salinity Manipulation for Marine Fish [Online] http://www.advancedaquarist.com/2007/6/fish [Accessed 03/08/2017]. Pro, Steven (2005) Garlic: What has been Studied Versus What has been Claimed [Online] http://reefkeeping.com/issues/2005-10/sp/index.php [Accessed 03/08/2017]. Pro, Steven (2003) Marine Ich/Cryptocaryon irritans - A Discussion of this Parasite and the Treatment Options Available, Part II [Online] http://reefkeeping.com/issues/2003-10/sp/feature/index.php [Accessed 03/08/2017]. Pro, Steven (2004) An Ounce of Prevention is Worth a Pound of Cure: A Quarantine Tank for Everything [Online] http://www.reefkeeping.com/issues/2004-10/sp/feature/ [Accessed 03/08/2017].
      jeremai

      By jeremai, in Biotopes,

      Probably the simplest way of stocking a biotope tank is to choose a specific reef location and stock only corals, fish and inverts collected from that location. This approach is the broadest and least limiting, making it easier to find suitable inhabitants for your tank.
       
      The waters around Florida and the Caribbean are home to forests of gorgonians, large patches of zoanthids, and swaying seagrass beds. Tanks showcasing Caribbean species often include gorgonians, zoanthids, macroalgae (especially Caulerpa sp.), and colorful Ricordia. Gobies, basslets, grammas, jawfish and pygmy angels are all at home in a Caribbean tank. Stony corals from the Caribbean are not usually available in the hobby, as their collection in and around Florida is restricted. Similar substitutes can be found in Pacific species, however. For example, if you were recreating a Caribbean lagoon and Diploria strigosa was not available, you could substitute the similar-looking Pacific species Platygyra labrinthiformis.
       

      An example of a patch reef.
       
      As the motherlode of biodiversity, reef tanks with a Pacific theme can take many forms, ranging from low-nutrient/high-flow tanks dominated by small-polyped stony corals to high-nutrient/medium-light tanks filled with Euphylliids, Acanthastrea and other large-polyped stony corals.
       
      If you view a typical reef from the air, you will see it segmented into a number of specific zones, and any of these would be a welcome starting point for a budding biotopic tank. Starting from the shore, they are:
       
      Lagoons and Seagrass Habitats: Lagoon areas are characterized by large patches of sand. The water here is calm and usually rich in nutrients. Plate corals are scattered across the sand, as well as brain corals and Euphylliids. Patches of seagrasses can be sparse or stretch for miles, and act as natural filters for the sediments that wash from the shore. Fringing and Patch Reefs: Surrounding and often jutting into  lagoons are rocky  flats. Many stony corals thrive here, including Acropora, Montipora, Faviids and Porites. The image to the right is an example of a stony coral patch reef surrounded by sand. Reef Crest and Upper Fore Reef: These areas are characterized by very aggressive water movement, high light, extremely low nutrients and abundant planktonic foods. SPS corals like Acropora dominate here, where their thick branching skeletons can withstand the pounding waves. Deep Fore Reefs: This area is generally dark, with strong water movement and plenty of planktonic food sources. It is home to non-photosynthetic gorgonians and colorful Dendronepthya and Scleronepthya. A tank dedicated to these corals requires very little lighting, but lots of feeding and strong filtration.  
      Any of these zones would be simple to recreate and effective as a beautiful reef system.
      jeremai

      By jeremai, in Biotopes,

      Symbiotic relationships, when two different species form close and long-lasting interactions, occur in all of the ocean’s ecosystems. From enormous sharks with their tag-along remoras, to the tiny microscopic zooxanthellae that live within the tissues of corals, many organisms have found that working together toward a common goal is the most efficient way to procure food and escape predation.
       

      A sea anemone hosting a clownfish.
       
      There are a number of common and not-so-common organisms that are perfectly suited for aquarium life. A tank dedicated to or featuring these pairs is not only a more realistic slice of the reef, but often provides a more appropriate living environment, leading to healthier livestock.
       
      One of the most common animals involved in symbiosis are anemones. In the wild, anemones of all shapes and sizes host hundreds of different fish and invertebrate species. Clownfish are probably the most well-known anemone symbionts, but other species of damselfish, namely Dascyllus trimaculatus, are also known to host with anemones in the wild. The anemone provides shelter for the fish within its stinging tentacles, and the fish return the favor by bringing bits of food back to the anemone.
       
      Anemones also host other types of life. Tiny, translucent shrimp, most commonly in the genus Periclimenes, are the most commonly found, and can be very entertaining to watch as they move in and out of the anemone’s tentacles harmlessly feeding on its mucus. Porcelain crabs, Neopetrolisthes ohshimai, are another popular invert for hosting with anemones. These crabs use the anemone for protection as they wave around their feeding appendages, waiting for food to float by.
       
      The important thing to remember here is that neither the anemone or the animal hosting it are dependent on the other for survival. Anemones will love long, happy lives without any animals living within their tentacles. Clownfish will often host other types of corals if an anemone is absent, and have even been known to host inanimate objects like powerheads. Periclimenes shrimp are also natural hosts of corallimorphs like Ricordea sp. in the wild, and will mirror that relationship in a biotope tank. In the same way, porcelain crabs will find a suitable coral substitute to provide them with cover. Don’t think that you must have an anemone in order to set up a biotope based on symbiosis – a 10g tank stocked to the brim with Ricordea and ten or fifteen Periclimenes shrimp would be a fascinating sight.
       
      If you do decide to keep an anemone, however, there are some special considerations to keep in mind regarding their care. Generally, anemones require high light and high flow to survive well in home aquaria. Their requirements are much the same as SPS corals, however anemones tend to wander around their tank stinging indiscriminately, and should only be housed with other corals with caution. A future installment of this series will go into more detail on anemone-only tanks.
       

      An Alpheid shrimp and its symbiotic goby.
       
      Another popular symbiotic pair are pistol shrimps of the genus Alpheus and their partner gobies. This combination is truly amazing to observe. The shrimp digs a burrow in which to live. In return for shelter, the goby keeps a keen eye out, and at the first sign of danger alerts the shrimp and both dart into the hole. Because the shrimp is nearly blind, it has at least one antenna in contact with the goby at all times as a means of communication. This would be the perfect pair for a small nano tank, where the interaction can be observed up close.
       
      When designing a biotope based on a symbiotic relationship, always be sure to take the needs of the both parties into consideration. In cases where one animal is more difficult to keep alive than the other, it is best to design the system with the needs of the more fragile species in mind. For example, Christmas tree worms (Spirobranchus sp.) are beautiful, but depend on their host Porites coral for survival. If you cannot keep the Porites alive, the worms are doomed. Since the worms don’t require any sort of special care, you would design your system around the coral, providing high light and random, chaotic flow.
      jeremai

      By jeremai, in Biotopes,

      Up till now we’ve discussed biotopes in their literal sense — systems built around a specific geographical or spatial location, and systems centered on a specific niche within that location. In this hobby though, there are no hard and fast rules, and the limits of what can be considered a ‘biotope’ are only capped by your imagination.
       
      If you’ve decided that you want to set up a biotope but aren’t sold on the traditional avenues, here is a sampling of systems that are becoming more and more popular.
      Single-Species Tanks
      Single-species systems are exactly what they sound like: the bioload is dominated by a single species, genus or perhaps family. Systems like these can take many forms; a systems designed around a Fu Manchu Lionfish, complete with a central cave for perching, is an example. Or perhaps a 40 Breeder with six inches of sand and a plethora of Upside-down Jellyfish.
       

      Rhinopias sp., perfect for a single-species tank.
       
      The goal with a single-species tank is to choose an organism and then build the system around it. That lionfish is going to need a strong skimmer to clean up after its messy eating, and those jellyfish would benefit from gentle flow and a sump packed full of live rock. People often create systems for a specific species due to their sensitive nature or difficult feeding habits, such as with dwarf seahorses or pipefish. Make sure you understand the needs of your chosen livestock, and meet those needs through your system.
      Marine Planted Tanks
      Macrolagaes occur on all the world’s reefs. In fact, in some reefs macros are the dominant calcifying organism. That means that instead of the reef being built by corals, it’s built by algae. No biotopic presentation can be called complete without the addition of some form of macro algae. The more popular macros in the hobby can be fairly drab, but there are plenty of species out there that would contribute to a spectacular algae-dominated planted tank.
       
      A system centered on macroalgaes does have a few specific considerations though, the first being pH. Just like terrestrial plants, macros take in carbon dioxide during the day and release it at night. This lights-out release of carbon dioxide can cause pH fluctuations; the more algae in the tank, the higher the probability of the pH changing dramatically, which can cause stress or even death for other inhabitants of the system.
       

      Halymenia sp. macroalgae, a popular and beautiful species.
       
      The simplest way to combat this is to have a refugium plumbed to the main tank, containing an algae such as chaetomorpha. Set up the light cycles so they oppose each other — when the main tank lights are on, the refugium lights are off, and when the main tank lights are off, the refugium is on. In this way the cycle of carbon dioxide release is offset and the system will remain more stable.
       
      Another problem that can be encountered is algae going sexual. When this happens, the algae turns translucent and releases spores in an attempt to repopulate a different location. This spore release is generally accompanied by a nutrient spike, but for a planted marine tank this is of little concern. Simple remove the dead portions of algae and the other macros in the tank will utilize the nutrients released. If you have other livestock in the system, such as fish or corals, and you notice them having an adverse reaction to the algae going sexual, do a waterchange and run some carbon.
       
      The algaes most likely to go sexual in home aquaria are Caulerpa sp, although all macros have the potential. Halimeda sp also go through the process fairly often, although it is usually just a few ‘pads’ that go and not the whole colony. Algaes go sexual for many reasons, though usually it is caused by being overgrown or not receiving enough nutrients. Basically, the algae does not think it has a good chance of survival where it is, and is trying to move somewhere more suitable. Some algaes will go sexual for no apparent reason however, and because of this there’s really no way of preventing the problem completely. I’ve never heard of a tank crashing specifically due to algae going sexual, so it’s one of those ‘deal with it as it comes’ scenarios. Don’t let it scare you off though, algae-dominated tanks are a beautiful sight!
      jeremai
      While a photo with a dramatic blur can often be artistic, it can also render a subject incomprehensible. Here are some ways to add clarity to your digital photographs.
       

       
      Tip 1: Reduce shutter lag. The time between pressing the trigger and the camera taking the picture is called shutter lag, and it can cause blurry pictures. Avoid it by pressing the trigger halfway down until you’re ready to shoot. When the right moment comes, press the rest of the way. This strategy is great when you’re taking pictures of people (especially kids) or animals. Tip 2: Minimize camera shake. Even the slightest camera movement can cause unclear photos. Use a tripod or brace yourself against a stationary object to hold the camera still. Some digital cameras come with image stabilization, another way to help get clear images of moving subjects. Tip 3: Use your digital camera’s Action shooting mode for taking photos of fish. It automatically optimizes your shutter speed to help capture motion. Or manually increase your camera’s shutter speed to achieve the same effect.
      jeremai
      Whether you’re looking to add to an existing reef system or you’re designing one from the ground up, one of the most confusing aspects is choosing between a protein skimmer and a refugium. Both can be both a benefit and a detriment to a reef tank depending on a lot of factors.
       
      Generally, protein skimmers remove organic compounds (among other things) directly from the water column, while refugiums bind those compounds in the form of algae which is then harvested as a means of export. Here’s a quick rundown of the benefits and drawbacks of each filtration type:
       

      A vibrant, healthy refugium.
      Refugiums
      Provides existing aquarium inhabitants with natural food sources such as phytoplankton and zooplankton. Filters water naturally (dramatically lowering nitrate and phosphate levels) and decreases the frequency of water changes that are needed. Stabilizes water conditions (especially oxygen level and pH). Helps control algae growth in the existing aquarium through nutrient competition. Serves as a temporary acclimation tank for new inhabitants. After development, refugiums provide considerable aesthetic value to the system. Some types of algae (namely a few Caulerpa spp.) may ‘go sexual’, or release spores into the tank. This causes a thick green haze that can irritate corals and fish, and would need to be removed with carbon combined with good mechanical filtration. There are many reasons for macroalgae to go sexual, but keeping it pruned and maintaining a set lighting schedule will help to keep it from happening (the exception is Chaetomorpha, which rarely goes sexual and may be lit on a 24hr photoperiod). Protein Skimmers

      Skimmate. Trust me, it’s a good thing!
       
      Skimmers increase the dissolve oxygen levels and redox potential in an aquarium. Remove dissolved organics before they get a chance to breakdown and become a food source for nuisance algae. A photo of the resulting product, called skimmate, is shown above. Can help lead to a more stable pH since less dissolved organics are in the system. Overall improvement in the health and vigor of the animals in the aquarium since their wastes are being removed from the system sooner via the collection cup. Can be very/extremely expensive. They can remove beneficial bacteria as well as phytoplankton and other desirable organisms from a system. They can remove trace elements that may need to be replenished or supplemented, such as Iodine. Other elements are most likely removed as well and if partial water changes are not practiced on a regular basis your system could become unbalanced chemically, i.e. not have the proper proportion or ratio of trace elements to major elements.  
      As you can see, it’s not a simple matter of one verses the other. Each method works in a different way to achieve the same result: a cleaner, healthier system. In the future I’ll breakdown the best way to size and utilize each for your system, but in the mean time here is a general rule of thumb: if your tank matures into an SPS-dominated system, consider a skimmer and possibly a refugium. If it matures into a softy or LPS-dominated tank, consider a refugium and possibly a skimmer. But always remember that neither is absolutely necessary, they only help to increase your chances of success.
      jeremai
      Often the first creatures added to a new tank are members of the clean-up crew. These small inverts are supposed to serve the purpose of ‘cleaning’ the tank of algae, leftover food and detritus, making the reefkeeper’s maintenance chores a little easier to manage.
       
      The new aquarist, anxious about stocking a tank yet excited to see some signs of life, often goes overboard with their first crew. Hermit crabs, along with a host of other creatures commonly included in clean-up crew packages, are not only unnecessarily destructive, but their intended use can better be served by other, more docile inverts, like snails. Place the two in the same tank, however, and any hobbyist will tell you that the hermits invariably end up wearing the snails as homes.
       

      Cute, but a potential hazard.
      What to Avoid
      While some hermit crab species, like the scarlet variety, tend to be less murderous than others, all will eventually need larger shells to use as homes, and snails are the best target for them. Those same snails are for more efficient at algae and detritus cleanup than the crabs will ever be, so why even bother? Other crabs are often included in crews as well — sally light foots and arrow crabs, in particular, are opportunistic and will often eat whatever they can get their claws on. Even the much beloved emerald crabs (Mithrax sp.) have been known to turn carnivorous for no apparent reason. I would recommend emerald crabs as a last resort in an algae battle, not as a preventative measure.
       
      Ok, so you’ve been converted away from using hermit crabs. In your search for a clean-up crew you come across a crab-less package, which should be perfect, right? The problem is, many crab-less packages contain sand sifting organisms, namely starfish and sea cucumbers. These animals rely on microscopic fauna in the sandbed as their sole food source, and once that food is exhausted the animal most often dies. Unless you have a very large tank, on the order of a couple of square feet of sandbed for each cucumber or starfish, these are best left alone.
       
      Coral banded shrimp and peppermint shrimp are sometimes included as part of the clean-up crew, but often they will turn opportunistic, eating coral polyps, other shrimp and sometimes even small fish. All shrimp need to be well-fed or they will make their own meals, often out of your corals.
       
      While most snail species are harmless algae or detritus eaters, there are a few varieties unsuitable for reef tanks. Murex snails are predatory, feeding on other snails and bivalves. Margarita snails pop up from time to time in shops, but are harvested from temperate locales, making them unsuitable for tropical tanks. Flamingo tongue snails are beautiful and harmless to most motile inverts, but feed solely on gorgonians and so require specialized care. Most conch species are effective algae eaters and scavengers, but grow much too large for most reef systems.
      Getting the Crew Together
      So what’s the alternative? A snail-only crew is the best way to go. Other than the species mentioned above and a few others, most snail species are small and harmless, unless you happen to be a bit of algae or a scrap of food. Let’s take a look at the specific problems you’ll be trying to address with your clean-up crew, and which species are best suited to solving those problems.
       
      Diatoms on Sand and Rocks:
      Diatoms look like abrown dust coating the hard surfaces in your tank. While most diatom blooms run their coarse, they can still be unsightly. Cerith snails and limpets are great choices for eating diatoms.
       
      Green Film Algae:
      This is the de facto standard as far as algae goes in reef tanks. It exists in all systems to some degree, and can range from barely noticeable to embarrassing. Astrea snails are amazing film algae eaters (the larger ‘turbo’ varieties are best for larger tanks, as they will knock over small frags in their search for food), along with Ceriths and chitons.
       
      Hair Algae:
      There are a couple types of hair algae. The standard type is non-branching and grows in clumps. Many snails munch on this type of hair algae, including turbo snails and chitons. For larger tanks, non-snail animals like urchins and sea hairs can be the solution to a hair algae problem. The other type of hair algae is Bryopsis. The strands of this type of algae branch off and look like tiny feathers. Most algae-eating animals stay away from this stuff; your best bet here is to solve the issues that are causing the Bryopsis rather than trying to find something that will consume it. Some people have had luck with turbo snails, sea hares and a couple other creatures however. Your results may vary.
       
      Cyanobacteria:
      This slimy, stringy ‘algae’ can often reach plague proportions in tanks with high nutrient inputs. While the best remedy here is prevention, Ceriths and Nerites are both good choices to help with the cleanup.
       
      Leftover Food:
      If you have a heavy hand when feeding your tank, you’ll want to take advantage of various creatures that will mop up the excess food your fish may miss. Nassarius snails are experts in sifting through the sandbed waiting for a meal, and will pop to the surface at the first whiff of feeding time. For getting into the nooks and crannies of your live rock, it is best to rely on the organisms that hitched in, namely pods and bristleworms. An occasional blast with a turkey baster will also help to keep thinks clean.
      Stocking Your Tank
      Now that you know which types of organisms to avoid and which to use, let’s go over how you should stock your tank with regards to a clean-up crew. You’ll often see so-called rules saying one snail per gallon; these sorts of rules are far too generic to be of any use, and often result in tanks that are overstocked with snails and crabs. Not all reef systems are created equal, and while one 20g may need fifteen snails, another may not need any.
       
      A much better approach would be more organic. If your tank develops an algae bloom, find out which snails or other organisms have the best track record of handling it, then pick up a few of those. Then, wait a couple weeks to give them a chance to do some work. If the problem does not resolve or gets worse, get a few more and wait another couple weeks.
       
      Most new tanks start off with heavy algae growth that dwindles over time. If you end up with a large clean-up crew toward the beginning, be prepared to whittle it down as time goes on and algae supplies decrease. Mature tanks with effective nutrient export and a low bioload often require very few if any snails to control nuisance algae.
       
      To conclude, hermit crabs do have a place in reef tanks, as interesting additions whose antics never cease to amuse. But for a dedicated clean-up crew, the downsides that hermits bring with them far outweigh their benefits. Look instead for a snail-only crew, and stock your tank according to its needs and not according to an arbitrary estimation based on gallonage.
×